Randomized-direction Stochastic Approximation Algorithms Using Deterministic Sequences

نویسندگان

  • Xiaoping Xiong
  • I-Jeng Wang
  • Michael C. Fu
چکیده

We study the convergence and asymptotic normality of a generalized form of stochastic approximation algorithm with deterministic perturbation sequences. Both one-simulation and two-simulation methods are considered. Assuming a special structure of deterministic sequence, we establish sufficient condition on the noise sequence for a.s. convergence of the algorithm. Construction of such a special structure of deterministic sequence follows the discussion of asymptotic normality. Finally we discuss ideas on further research in analysis and design of the deterministic perturbation sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deterministic Analysis of Stochastic Approximation with Randomized Directions

We study the convergence of two stochastic approximation algorithms with randomized directions: the simultaneous perturbation stochastic approximation algorithm and the random direction Kiefer–Wolfowitz algorithm. We establish deterministic necessary and sufficient conditions on the random directions and noise sequences for both algorithms, and these conditions demonstrate the effect of the “ra...

متن کامل

A Deterministic Analysis of Stochastic Approximation with Randomized Directions - Automatic Control, IEEE Transactions on

We study the convergence of two stochastic approximation algorithms with randomized directions: the simultaneous perturbation stochastic approximation algorithm and the random direction Kiefer–Wolfowitz algorithm. We establish deterministic necessary and sufficient conditions on the random directions and noise sequences for both algorithms, and these conditions demonstrate the effect of the “ra...

متن کامل

Solving a Stochastic Cellular Manufacturing Model by Using Genetic Algorithms

This paper presents a mathematical model for designing cellular manufacturing systems (CMSs) solved by genetic algorithms. This model assumes a dynamic production, a stochastic demand, routing flexibility, and machine flexibility. CMS is an application of group technology (GT) for clustering parts and machines by means of their operational and / or apparent form similarity in different aspects ...

متن کامل

New Old Algorithms for Stochastic Scheduling

We consider the stochastic identical parallel machine scheduling problem and its online extension, when the objective is to minimize the expected total weighted completion time of a set of jobs that are released over time. We give randomized as well as deterministic online and offline algorithms that have the best known performance guarantees in either setting, online or offline and determinist...

متن کامل

APPROXIMATION OF STOCHASTIC PARABOLIC DIFFERENTIAL EQUATIONS WITH TWO DIFFERENT FINITE DIFFERENCE SCHEMES

We focus on the use of two stable and accurate explicit finite difference schemes in order to approximate the solution of stochastic partial differential equations of It¨o type, in particular, parabolic equations. The main properties of these deterministic difference methods, i.e., convergence, consistency, and stability, are separately developed for the stochastic cases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002